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SUMMARY 
Kramer's generalization of Shannon's sampling theorem takes us from a signal represented by a finite Fourier trans- 
form to a signal represented by another and more general finite integral transform. In this paper we will attempt to show 
that the already obtained results for Kramer's theorem are of use in the field of finite integral transforms. Also by in- 
troducing such transforms one can treat some communications problems. An example is the case of representing a 
signal which is the output of time variant filter. 

1. Introduct ion 

Kramer ' s  [1] generalized sampling theorem statement is "Let I be an interval. Suppose that 
for each real t 

= f1K(t, x)g(x)dx, (1) f(t) 

where 9 (x)e L 2 (I). Suppose that for each real t, K (t, x)e L2(I ) and that there exists a countable 
set E = {t.} such that {K(t., x)} is a complete orthogonal  set on L2(I ). Then 

f(t) = lira ~ f(t.)S~(t), (2) 
N ~  Inl<_-N 

where 

( K(t, x)K(t., x)dx 
s . ( t )  = (3)." 

xlK(t,,x)12dx 

Now the Shannon's [-2] sampling theorem becomes its special case of K(t, x ) =  e itx. Kramer  
showed that these conditions on the kernel K (t, x) are exhibited by the solution of n th order, 
self-adjoint differential equation and gave a first order and the Bessel differential equation as 
illustrations. 

Campbell  [3] considered as kernels of the generalized sampling theorem the solution of a 
regular first order and regular second order differential equation with separated boundary 
conditions, and the solutions of the singular Bessel and Legendre equations. In [-4] we consider- 
ed the associated Legendre, the Gegenbauer,  the Tchebichef, the prolate spheroidal functions 
and a Bessel-like function which is a solution to a fourth order differential equation. Although 
this theorem represents an important  extension to Shannon's sampling theorem, we notice 
that it was neglected, especially in applications. This is no surprise when we know that the com- 
munication engineer uses the Fourier transform mainly, and that the ideal low-pass filter, with 
its nice time invariant impulse response, is used to give the physical interpretation. This paper  
is devoted to the possible reason for this neglect and at the same time will offer some suggestions 
in this direction. We will a t tempt to raise some questions, to show that the Kramer  generaliza- 
tion of the sampling theorem might be a very handy tool. First, this generalization takes us 
from a signal represented by a finite Fourier transform to a signal represented by another and 
more general finite integral transform. Hence, the results that have already been obtained in 
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[1], [3] and [4] for Kramer's theorem may prove to be of use in the field of finite integral trans- 
forms. In addition, introducing.such transforms might simplify some communication problems 
as it did in other fields. This last question may deal with the possibility, for example, of using 
the generalized sampling theorem for the case of a signal which is the output of a time variant 
filter. We now note that if such integral transforms are introduced then Kramer's theorem will 
play a role similar to the one played by Shannon's theorem in terms of the finite Fourier trans- 
form. 

2. O t h e r  Finite  Integral  T r a n s f o r m s  for C o m m u n i c a t i o n  T h e o r y  

Here, we first introduce two finite integral transforms as they appear in the literature [-5, 6, 7], 
namely the finite Hankel and Legendre transforms, then try to extend their definition with the 
help of Kramer's theorem. 

Finite Hankel Transform 

f(tp) = f(r)rJ,(tpr)dr, J~(tp) = 0, p = 1, 2 , . . . ,  (4) 
0 

with the inverse transform 

f ( r ) =  ~ 2f(tp) j.(tvr). (5) 
J:+ l (tp) 

Let us extendf(tp) tof( t )  in (4) with unrestricted t. We quickly realize thatf(t)  can be automatic- 
ally calculated in terms off(tp) by the use of Kramer's theorem, which gives 

f(t) = ~ f(tp)Sp(t), (6) 
p = l  

where Sp(t)is given in [1]. 

Legendre Transform 

f(n) = f l_ l f(u) Pn (U) du (7) 

and 

f(u) = ~ (n + �89 (u). (8) 
n = 0  

We extendf(n) tof(v)  and in the same way as above we getf(v) in terms off(n), with the aid 
of Kramer's theorem to be 

f ( v ) =  ~ f(n)S,(v), (9) 
n = - - o o  

where S,(v) is given in [3]. In the same way, this extension can be applied to all finite integral 
transforms with kernel defined by (1) and where S,(t) is found in [3] and [4]. 

Next  we take the above two examples of finite integral transforms to show their possible 
advantage for the system function analysis of filters. In (4) let the inverse Hankel transform of 
f( t)  with n = 2 b e f ( r ) =  r. In contrast to this the inverse Fourier transform to the same f( t)  is 
found in 1-4] to be 

(1 - r2)~ (2 - 3r - r 2) (10) 
f(r)  = lSz: 

This, obviously, is a more complicated system function than f(r)= r. 
Now in (7) letf(u) = 1, u = cos 0, be the inverse Legendre transform off(v), then we can show 

[4] that the corresponding inverse Fourier transform off(v)  is 
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u (11) f ( u )  - -  c o s  

again a more complicated system function than f(u)= 1. 
The third question deals with a problem of a different nature, concerning the fact that most 

linear filters are treated as stationary ones [8]. That is, their impulse response depends on 
(t-t')dt'. For example, the output 

x(t) = (~ok(t, t')f(t')dt' (12) 

with 

k(t, t') =- k( t - t ' ) .  (13) 

A more specific example is the impulse response of an ideal low-pass filter 

sin a( t -  t') (14) 
k ( t - t ' ) =  n( t- t ' )  

Here we notice the spirit of the Fourier Transform and its corresponding convolution theorem. 
The question here is that Kramer's generalization considers K(t, t') in general and not only 
k (t-t ').  As such it might very well be found to be of interest in the field of time variant linear 
filter analysis or its output signal sampling. 

Another example that might show an advantage of Kramer's sampling theorem is given that 

fo, f(tl, t2) = 2n j_ .2  g(xl, xz)ei(Xlt~+x2t2)dxldx2, (15) 
-.~ 

where 
g(Xl, X2) = 0, Ixd > [a~[, Ix2[ > la21, (16) 

is a two-dimensional finite Fourier transform. For this we need a product of two infinite series 
[9] to representf(t l ,  t2)in terms of its sample points,f(nln/al, n2n/a2). But if we havef( t )with  
p = (t 2 + t22) �89 and such that r =  (x~ + x2) ~ then from [-6] we can write (15) as 

f(p) = f l rf(r)Jo(pr)dr , (17) 

a finite Hankel transform. Then, using Kramer's theorem,f(p) can be represented by an infinite 
series in terms of its sample points f(p,). 
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